Brassinosteroids: Regulators of Cell Expansion and Development

- Biosynthesis, Metabolism and Transport of BRs
- BR Signaling Pathway
- Effects on Growth and Development
 - Shoot growth
 - 2 Root growth
 - **3** Xylem differentiation
 - **4** Germination

BR receptor, BRI1

• bri1 (brassinosteroid-insensitive 1)

- ✓ From a screen of approximately 70,000 EMS-mutagenized seedlings of *Arabidopsis*
- ✓ In the presence of 10^{-6} or 10^{-7} M BRs, elongation of wildtype roots inhibited by up to 75%.
- ✓ bri1 mutant exhibits normal root elongation in the presence of BL.
- ✓ bri1 mutant is an extreme dwarf that reaches less than 10% of the height of wild-type
- (B) Wild type

- biotin-tagged photoaffinity castasterone (BPCS)
- ✓ an analogue of castasterone
- Carbene-generating phenyldiazirine moiety
- : allow the formation of a covalent bond between BPCS and specific proteins upon irradiation with UV

Clouse et al., 1996

Kinoshita et al., 2005

BR receptor, BRI1

BRI1

- ✓ Located in plasma membrane & endosome
- ✓ Leucine-rich repeat (LRR)-receptor kinase
- ✓ Dual specificity
 - Serine (S)/Threonine (T)
 - 2 Tyrosin (R)
- ✓ Domains
 - 1 Extracellular tandem 25 LRR motifs
 - Island domain (70 a.a.)
 - LRR22 (24a.a.)
 - → Minimum binding site for BRs (94 a.a.)
 - 2 Transmembrane domain
 - 3 Cytoplasmic kinase
 - Juxtamembrane region (JM)
 - Kinase
 - C-terminal tail (CT)

BR receptor, BRI1

- BRI1 becomes phosphorylated at multiple intracellular domains.
 - ① Juxtamembrane region (JM)
 - (2) Kinase
 - 3 C-terminal tail (CT)
- Roles of phosphorylation sites in BRI1
 - ① Receptor activation
 - 2 Dissociation of BKI1 (BRI1's inhibitor)
 - BKI1 (BRI1-kinase inhibitor1)
 - (3) Interaction with BAK1 and BSK
 - BAK1 (BRI1-associated receptor kinase 1)
 - BSK (BR-signaling kinase)
- CT of BRI1 negatively regulates the receptor, this effect is nullified upon BR binding.

В MERRLMIPCFFWLILVLDLVLRVSGNAEGDALSALKNSLADPN KVLQSWDATLVTPCTWFHVTCNSDNSVTRVDLGNANLSGQLVM OLGOLPNLOYLELYSNNITGTIPEQLGNLTELVSLDLYLNNLS GPIPSTLGRLKKLRFLRLNNNSLSGEIPRSLTAVLTLQVLDLS NNPLTGDIPVNGSFSLFTPISFANTKLTPLPASPPPPISPTPP SPAGSNRITGAIAGGVAAGAALLFAVPAIALAWWRRKKPODHF FDVPAEEDPEVHLGQLKRFSLRELQVASDNFSNKNILGRGGFG KVYKGRLADGTLVAVKRLKEERTQGGELQFQTEVEMISMAVHR NLLRLRGFCMTPTERLLVYPYMANGSVASCLRERPESQPPLDW PKRORIALGSARGLAYLHDHCDPKIIHRDVKAANILLDEEFEA VVGDFGLAKLMDYKDTHVTTAVRGTIGHIAPEYLSTGKSSEKT DVFGYGVMLLELITGORAFDLARLANDDDVMLLDWVKGLLKEK KLEALVDVDLQGNYKDEEVEQLIQVALLCTQSSPMERPKMSEV VRMLEGDGLAERWEEWOKEEMFRODFNYPTHHPAVSGWIIGDS TSQIENEYPSGPR

BR signal transduction pathway (from BRI1 to BSK1)

- BRI1 receptors normally function as homo-oligomers in the cell.
- Following BRI1's binding to and activation by BRs, phosphorylated-BRI1 forms a hetero-oligomer.
 - ✓ BRI1/BRI1 homodimer → BRI1/BAK1 heterodimer
 - ✓ BAK1 : Second LRR kinase (with no TM domain)
- Phosphorylated BRI1 trans-phosphorylates BAK1. → Activated form of receptor

BR signal transduction pathway (BIN2)

- BRI1/BAK1 heterodimer induces the BR response by inactivating a repressor called BIN2.
 - ✓ BIN2 (brassinosteroid insensitive-2)
 - Plant GSK3(Glycogen synthase kinase3)-like Kinases, S/T kinases
 - Involves in a wide range of signaling pathways
 - Negative regulator of BR signaling: BIN2 inhibits BR-specific transcription factors.

Figure 2. Signaling Network Mediated by GSK3-like Kinases in Arabidopsis and Rice.

Arrows and bar ends indicate activation and inhibitory action, respectively, while dotted lines indicate hypothetical regulation. Substrates phosphorylated by GSK3-like kinases are marked with red circles containing the letter P.

BR signal transduction pathway (BIN2)

In the absence of BRs,

- ✓ BIN2 \rightarrow Phosphorylated BIN2 (Active form) \rightarrow Acts as a negative regulator of BR signaling
- ✓ BIN2 phosphorylates BR-specific TFs (BES1 and BZR1).
 - BES1 (bri1-EMS-suppressor 1)
 - BZR1 (brassinazole-resistant 1)
 - Sharing 90% identity in a.a. sequences
- ✓ Activity of phosphorylated BES1/BZR1 by BIN2 are inhibited by several mechanisms.
 - Blocking binding to a target promoter
 - ② Shuttling (from nucleus to cytoplasm)
 - by 14-3-3 proteins
 - 3 Degradation by 26S proteasome

In the presence of BRs,

- 1 BRI1/BAK1 heterodimer
- ② BSK1 activation (BSK1 \rightarrow @-BSK1)
- 3 BSU1 activation (BSU1 \rightarrow \bigcirc -BSU1)
 - BSU1 (bri1 suppressor 1): S/T phosphatase
- 4 BIN2 inactivation (\bigcirc -BIN2 \rightarrow BIN2)
- \bigcirc Accumulation of BES1/BZR1 in nucleus (\bigcirc -BES1/BZR1 \rightarrow BES1/BZR1)

Phenotypes of the bes1-D Mutant

(B) bes1-D Suppresses bri1 Phenotypes

BES1 Accumulation in the Nucleus in Response to BL Treatment

Wild-type BES1::GFP is present in the nucleus at relatively low levels in dark-grown hypocotyl cells without BL treatment (upper-left).

BL treatment for 24 hr increased the BES1-GFP nuclear accumulation (upper-right).

Lower panels show nuclei stained with DAPI

Phenotypes of the bzr1-1D Mutant

- (D) Wild-type and bzr1-1D mutant grown in long days (16 hr light, 8 hr dark) for 26 days.
- (E) Wild-type and bzr1-1D plants grown in short days (9 hr light/15 hr dark) for 26 days

BZR1 Accumulation in the Nucleus in Response to BL Treatment

Using *BZR1* native promoter-driven BZR1-CFP transgenic lines, BZR1 levels were monitored in different regions of elongating hypocotyls.

BL treatment increases BZR1-CFP protein nuclear accumulation

BR signal transduction pathway (BES1/BZR1)

- BES1 and BZR1 regulate different subsets of genes in Arabidopsis.
- BES1 enhances the expression of BR-stimulated genes by interacting with <u>other proteins</u>.
 - √ (ex) TFs of distinct familes
 - : BIM1 (BES1-interacting Myc-like 1)
 - BES1/BIM1 heterodimers bind to E-box (CANNTG) and activate transcription
 - √ (ex) Factors involved in chromatin remodeling
 - (1) IWS1 (RNAPII recruitment)
 - 2 Jumonji-domain proteins, REF6 and ELF6 (Histone modification)
 - 3 SDG725 (H3K36 methyltransferase)

- BZR1 acts as a repressor of BR biosynthesis.
 - ✓ BZR1 directly binds to BRRE (CGTG(T/C)G).
 - ✓ BZR1 plays key role in the negative feedback regulation of the BR biosynthesis.

BR signal transduction pathway

BRs promote both cell expansion and cell division in shoots.

The growth-promoting effects of BRs

- ✓ BR-induced cell expansion
 - (ex) Rice lamina inclination assay

[+BR] Upper (adaxial) surface of the leaf near the joint expand more than the cells on the lower(abaxial) surface.

- (ex) Bean second internode assay
- (ex) Cell size and number in BR-deficient mutants

Nakaya et al., 2002

mutant Arabidopsis plants

Table 2 Dimensions and numbers of cells in the uppermost layer of the palisade tissue of the fifth foliage leaves of wild-type and

Strain	Cell size (µm) (number of cells examined)			Cell numbers in longitudinal or transverse sections ^a			
	Leaf-length	Leaf-width	Leaf-thickness	In a longitudinal section		In half a transverse section	
				Palisade cells	Mesophyll cells	Palisade cells	Mesophyll cells
Wild type	40.3± 6.1 (66)	40.7± 5.9 (43)	37.5±11.5 (109)	332±23.1	1,008±10.6	110±11.0	339±35.0
dwf1-5	22.4± 6.3 ^b (128)	$26.3\pm 6.8^{b} (78)$	37.5±12.8 (206)	218± 8.5 ^b	620±18.7 ^b	101±13.6	378±33.1
det2-13	32.1± 9.3 ^b (117)	$35.0\pm11.0^{\ b}$ (67)	$41.4\pm12.6^{\ b}(194)$	197± 7.6 ^b	605±23.6 b	115 ± 18.0	360 ± 54.9
det2-18	34.3 ± 10.1^b (95)	$31.6\pm 8.5^{\ b} (95)$	47.8±16.5 ^b (190)	160±12.9 ^b	495±29.0 ^b	93±11.2 ^b	301±19.7

Each value is given as a mean \pm standard deviation and is based on data from more than three individual plants.

^a Number of palisade cells in the uppermost layer and total mesophyll cells counted in the longitudinal section along the midrib (left two columns),

BRs promote both cell expansion and cell division in shoots.

Growth response to BRs may involve a slower pathway involving gene transcription,
 whereas the rapid response to auxin may not require gene transcription.

The kinetics of cell expansion in response to IAAs

- √ 15-minute lag period
- ✓ Reaches maximum rate within 45 minutes

The kinetics of cell expansion in response to BRs

- √ 45-minute lag period
- ✓ Reaches maximum rate after several hours

BRs promote both cell expansion and cell division in shoots.

Plant cells expand in 3 steps

- 1 Osmotic uptake of water across the membrane
- ② Turgor pressure builds up because of the rigidity of the cell wall
- 3 Biochemical wall loosening occurs

Each of these steps is likely to be modulated by BRs.

- BRs increase the uptake of water through aquaporins.
- 2 Induce the expression of wall modifying enzymes and enhance the cell wall loosening
 - Xyloglucan endotransglycosylase/hydrolase (XTHs)
 - Expansins

The increase in wall plasticity in the presence of BR indicates that BR has induced cell wall loosening, which is required for cell expansion.

Effect of BR on microtubule organization

- An additional requirement for normal elongation is the control of microtubule organization.
 - ✓ BR-deficient mutant cells contain very few microtubules and that those present lack organization.
 - → [+BR] Restoration of normal microtubule abundance and organization

(B)

BR-deficient mutant

- Microtubules (green)
- Chloroplast (yellow)

25 µm

25 µm

10 µn

BRs both promote and inhibit root growth.

- BR exerts strong effects on overall root morphology, influencing both the elongation rate and branching habit.
- The phenotypes of BR-deficient mutants, which typically exhibit reduced root growth.
 - → BRs are required for normal root elongation.
- Exogenously applied BRs may have positive or negative effects on root growth depending on the concentration.
 - → High concentrations of BR, like auxin, stimulate ethylene production.
- At low concentrations, BRs can also induce the formation of lateral roots by influencing polar auxin transport.

BL and IAA act synergistically to promote lateral root development

BRs and cytokinins appear to regulate the cell cycle via similar mechanism

Interphase ← → Mitosis

- Cell cycle consists of 4 phases: <u>G1, S, G2</u>, <u>M</u>
- ① CDC2 (G2 \rightarrow M): major CDK (Auxin \rightarrow expression induction/CK \rightarrow activation)
- 2 CYCD3 (G1 \rightarrow S) : D-type cyclin
 - \checkmark (CK \rightarrow expression induction)
 - ✓ Overexpression of *CYCD3* can bypass the cytokinin.
- BRs increase CYCD3 gene expression.
- BRs can substitute for zeatin in the growth of callus

BRs also stimulate cell proliferation via CYCD3 expression.

BRs promote xylem differentiation during vascular development.

- BRs play an important role in vascular development, by promoting differentiation of the xylem and suppressing that of the phloem.
 - (A) Wild-type Arabidopsis stem cross section
- (B) Arabidopsis det2 mutant stem cross section

Zinnia leaf mesophyll cells

Tracheary cells that differentiated from zinnia leaf mesophyll cells

20 µm Higher phloem-to-xylem ratio

than wild-type

- 20 µm Culture in dark
- 20 µm
- Zinnia elegans (백일홍)
- In vitro xylem differentiation study system

BRs promote seed germination.

- Seeds, contain very high levels of BRs.
- BRs promote seed germination as well.

Brassinosteroids: Regulators of Cell Expansion and Development

- Biosynthesis, Metabolism and Transport of BRs
- BR Signaling Pathway
- Effects on Growth and Development
 - Shoot growth
 - 2 Root growth
 - **3** Xylem differentiation
 - **4** Germination